Publications

Publications by categories in reversed chronological order. * denotes equal contribution.

2025

  1. Unlearning Isn’t Invisible: Detecting Unlearning Traces in LLMs from Model Outputs
    Soumyadeep Pal*, Yiwei Chen*, Yimeng Zhang, Qing Qu, and Sijia Liu
    Oral at Machine Unlearning for Generative AI workshop 2025
  2. LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks
    Soumyadeep Pal*, Changsheng Wang*, James Diffenderfer, Bhavya Kailkhura, and Sijia Liu
    In Second Conference on Language Modeling (COLM) 2025
  3. Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning
    Changsheng Wang, Yihua Zhang, Jinghan Jia, Parikshit Ram, Dennis Wei, Yuguang Yao, Soumyadeep Pal, Nathalie Baracaldo, and Sijia Liu
    In Forty-second International Conference on Machine Learning (ICML) 2025

2024

  1. Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency
    Soumyadeep Pal, Yuguang Yao, Ren Wang, Bingquan Shen, and Sijia Liu
    In The Twelfth International Conference on Learning Representations (ICLR) 2024

2023

  1. Towards understanding how self-training tolerates data backdoor poisoning
    Soumyadeep Pal, Ren Wang, Yuguang Yao, and Sijia Liu
    Best paper finalist @ The AAAI’s Workshop on Artificial Intelligence Safety 2023